kNNDD-based One-Class Classification by Nonparametric Density Estimation
نویسندگان
چکیده
منابع مشابه
One-Class Classification by Combining Density and Class Probability Estimation
One-class classification has important applications such as outlier and novelty detection. It is commonly tackled using either density estimation techniques or by adapting a standard classification algorithm to the problem of carving out a decision boundary that describes the location of the target data. In this paper we present a simple method for one-class classification that combines the app...
متن کاملNonparametric volatility density estimation
B E RT VA N E S , P E T E R S P R E I J 1 and HARRY VAN ZANTEN 2 Korteweg-de Vries Institute for Mathematics, University of Amsterdam, Plantage Muidergracht 24, 1018 TV Amsterdam, The Netherlands. E-mail: [email protected]; [email protected] Division of Mathematics and Computer Science, Faculty of Sciences, Free University Amsterdam, De Boelelaan 1081a, 1081 HV Amsterdam, The Netherlands...
متن کاملStatistical Topology Using the Nonparametric Density Estimation and Bootstrap Algorithm
This paper presents approximate confidence intervals for each function of parameters in a Banach space based on a bootstrap algorithm. We apply kernel density approach to estimate the persistence landscape. In addition, we evaluate the quality distribution function estimator of random variables using integrated mean square error (IMSE). The results of simulation studies show a significant impro...
متن کاملMultivariate Nonparametric Volatility Density Estimation
We consider a continuous-time stochastic volatility model. The model contains a stationary volatility process, the multivariate density of the finite dimensional distributions of which we aim to estimate. We assume that we observe the process at discrete instants in time. The sampling times will be equidistant with vanishing distance. A multivariate Fourier-type deconvolution kernel density est...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Korean Institute of Industrial Engineers
سال: 2012
ISSN: 1225-0988
DOI: 10.7232/jkiie.2012.38.3.191